NASA TT F-8LL46
3\
APPLICATION OF THE MULTI-CONFIGURATION APPROXIMATION

TO THE DETERMINATION OF THE DIPOLE FORCE FOR ATOMS
OF THE BERYLLIUM AND BORON TYPES

by

A. B. Bolotin and A. P. Yutsis

Translation of "Primeneniye mnogokonfiguratsionnogo priblizheniya
pri opredelenii sily dipolya dlya atomov tipa berilliya i bora"
Zhurnal Eksperimental'noy i Teoneticheskoy Fiziki, Vol. 2, 537-54h, 1953

GPO PRICE $

CFSTI PRICE(S) $

£ 1,00
=

Hard copy (HC)

Microfiche (MF)

ff 653 July 65

NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION
WASHINGTON June 1963

(ACCESSION NUMBER) 3
' (THRU)
(PAEESI
? (CODE)
(NASA cr
OR TMX OR AD NUMBceR)

(CATEGORY
)

FACILITY rorm gog




APPLICATION OF THE MULTI-CONFIGURATION APPROXIMATION
TO THE DETERMINATION OF THE DIPOLE FORCE FOR ATOMS
OF THE BERYLLIUM AND BORON TYPES

A, B. Bolotin and A. P. Yutsis
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Expressions are presented for the total dipole 7

force for 132232p——132232 transitions of atoms

. 2 2 2,.2
of the beryllium type and 1s8"282p --15"28"2p
transitions of atoms of the boron type in a two-
configuration approximation. The constants of
the analytic single-electron wave functions are

determined for the atoms B, C'y N' ', 0 Jand F' 4

in the 1s22p3 and 152252p2 configurations. The
analytic single-electron wave functions are used

to determine values of the total dipole force, the
oscillator strength, and the transition probability

2

+
for 1322s2p——1s 282 transitions of the atoms Be, B ,

it 3

¢, N 4

and O+ and for 152282p2——1s22522p transi-

+
tions for the atoms B, C', N'', 0'2 and F4 .




1. INTRODUCTION

In [1, 2] it was shown that the multi-configuration approxi-
mation [35 is a considerable refinement on the quantum-mechanical
method of atomic calculation in connection with computations of
the total energy of the atom. Accordingly, it would appear reason-
able to apply this approximation to the determination of various
other physical quantities. The present article is concerned with
the use of the multi-configuration approximation in determining
the quantities that play a part in the transition theory for atoms
of the beryllium and boron types.

In [2] Yutsis and Kavetskis showed that for the fundamental
configuration of atoms of the beryllium type the multi-configura-
tion approximation actually reduces to the two-configuration ap-

2 2 2
proximation 18 28 —-1s 2p . The approach outlined in section 2 of
[2] leads to the conclusion that in the case of the fundamental
configuration of atoms of the boron type it is possible to confine

oneself to the two-configuration approximation 1522322p——1522p3 .

By virtue of the same reasoning, in the case of the 132232p

configuration of atoms of the beryllium type and the 1522s2p2
configuration of atoms of the boron type it is possible to confine
oneself to a single-configuration approximation, since in these
circumstances there are no configurations of great weight [3]
relative to the given configurations. Accordingly, in this article
we shall use a two-configuration approximation for the fundamental
configurations of atoms of the beryllium and boron types, and a
single-configuration approximation for the excited configurations

1% 2o 2
s 2s2p and 18"2s2p” .

We shall base the numerical calculations on analytic single-
electron wave functions of the type defined in [4], since one of
the authors has already determined the constants of functions of
this type for certain relevant configurations [1]. We have since



determined these constants for the 1322p3 and 132232p2 configura-
+ ot *3 4

tions of the atoms B, C, N , O and F .

In [2] a two-configuration approximation was applied to

atoms of the beryllium type using hydrogen-like analytic single-

electron wave functions [5]. In view of the fact that analytic

functions of another type are used here, we present the results of

determining the energy corrections for a two-configuration approxi-

mation both for atoms of the boron type and for atoms of the beryllium /538

type. These results are necessary in order to obtain the overall

wave function in the two-configuration approximation, this being

needed to determine the total dipole force in the same approximation.

2. EXPRESSION FOR TOTAL DIPOLE FORCE

In the theory of electric dipole radiation an important part
is played by an intermediate quantity which in the case of an LS
coupling is determined as follows:

s(1s, L'S) = s(L's, LS) = Z S(LSMLMS, L’SML.MS) .
MLM.LJMS ‘ (2'1)

Henceforth we shall refer to this quantity as the total dipole
force, since it represents the sum of the dipole forces between the
individual states of corresponding terms. The dipole force is
determined as follows:



S(LSM M, L'SM;/Ms) = |.Jr ¥* (LSM Mq | X)PY (L' SM; /Mg | X) dX|2
LoM Mo L SMpMg) = SM Mg 1Ms .

(2.2)

In (2.1) and (2.2) L, S, ML and MS are quantum numbers of the whole

atom, L and S characterizing the term. In (2.2) P is the operator
of the electric dipole moment, X denotes all the coordinates of all
the electrons, while the integral sign in (2.2) denotes integration
with respect to all the spatial and summation with respect to the
spin coordinates of all the electrons.

We shall consider transitions between the configurations

152252pq+1 (below we denote this by 3) and 1322322pq (denoted by 1).
When q = O we have the case of atoms of the beryllium type, and
when q = 1 the case of atoms of the boron type. For electric di-
pole radiation in the case of atoms of the beryllium type we get

1P —1S transitions, and in the case of atoms of the boron type

2S,2P,2D —2P transitions; in this notation the term of configura-
tion 3 occupies the first place and that of configuration 1 the
second. As already pointed out, in the case of an excited con-
figuration 3 we shall confine ourselves to a single-configuration
approximation, while for the fundamental configuration 1 we shall
use the two-configuration approximation 1-2, where 2 denotes the

configuration 1322pq+2. Then the overall wave function for con-
figuration 1 in accordance with equation (2.9) of [3] can be
written in the form:

1
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Here Y (A1|X) and ¥ (AZIX) are the overall wave functions for

configurations 1 and 2 in the single-configuration approximation.
a is a constant, the absolute wvalue of which, as proposed in [3],
12

will be called the "weight" of configuration 2 relative to configura-
tion 1.

We shall express the overall wave functions for the different
configurations in the single-configuration approximation as linear
combinations of determinants, composed of single-electron wave
functions, which we shall consider orthonormalized. It is possible
to assume [6] that the single-electron wave functions of the 1s-
electrons are the same in all three configurations of a given atom.
Then for the total dipole force we obtain the following expressions:

s(1.3) = -2 [N(r25,2p) N(2s, 2s) _f&N(rzs,zp) N(2p,2p._ |
1+a? E Y 52 Fa2
12

(2.4a)

2 1 21
for the 1s 282p P - 13225 S transition of atoms of the beryllium
type and

2a
31+ a

S(LBFﬁ—)'
12

X[N(r2s 2p), N(2s,2s), .N(2p,2p),. + 112 BN (r2s,2p) N2(2p 2p) ]2
PPy A g By T T PR 2 N A,

(2.4b)



2 22 2 2 2 2 2
for the 1s 2s2p S, P, D - 18 2s 2p P transitions of atoms of the

boron type, where a and B have the following values:

I I S T 3

a 1 9 5

B -2 1 1

N are radial integrals defined as follows:

w

N(rknt, n't’)ij = f rkPi(nl\r) Pj(nfl"r) dr. (2.5)
0

Here the radial wave functions P; (nt|r) and Pj (n“t’|r) relate to

configurations i and j respectively. When k = O the int?g?al (2.5)
reduces to N (nt, n't'),., which appears in (2.4) with n“t’ = nt,
1)

Substituting a12 = 0, from (2.4) we obtain the corresponding
expressions for the total dipole force in the single-configuration
approximation. On the other hand, substituting a12 =1, and
neglecting the first term in the square brackets, we get expressions,
divided by 2, for the total dipole force, relating to transitions
between corresponding terms of configurations 2 and 3 in the single-
configuration approximation.



3. VALUES OF THE WAVE FUNCTION CONSTANTS

We shall use analytic single-electron radial wave functions
of the following form:

P (1s|r) = ¥ 4103 re 7, (3.1a)
P (2s]r) = ¥ 4T5/30r(re™ ™ + £o T, (3.1b)
P (2p|r) = ¥ 471505/31‘2 g~ ler ’ (3.1¢)

where

£=-3(a+D3 /10 +a)

and

16Eq . £2n2

¥ (1+ b)*  3b3 (3-3)




These functions satisfy the orthonormalization condition. The
constants, T, a, b, and ¢ are determined by seeking a minimum for
the total energy of the atom. Values of these constants for con-
figurations 1, 2 and 3 of atoms of the beryllium type and also for
configuration 1 of atoms of the boron type are given in [4]. Those
for configurations 2 and 3 of atoms of the boron type will be found
in Table 1.

For completeness, we give values of these constants for all
the terms, although for the solution of our problem it is not es-
sential to know the wave functions of all the terms of the given
configurations. The table also includes theoretical and experi-
mental values of the total energy, the latter being taken from [7].

In order to make use of the overall wave function in the two-
configuration approximation (2.3) it is necessary to determine the
constant a For its determination we have from equations (2.11)

12

and (2.12) of [3]

1
= A E .
1 2 1
A = AE + - .
E=E, / (8B +E - E,), (3.5)
where
1 1
AE = E - E1

is the correction to the energy of configuration 1 for the two-

configuration approximation, E1 and E2 are the energies of con-

figurations 1 and 2 in the single-configuration approximation, and

L5461



E1 is the energy of configuration 1 in the two-configuration approxi-
mation, E12 is the nondiagonal matrix element connecting configura-

tions 1 and 2. An expression for this element is given in equation
(3.7) of [2] for atoms of the beryllium type, for atoms of the boron
type the corresponding equation is:

B = (/Z7/3) G, (25,2p)y, N (15,18)15 N(20,20), . (3.7)

Here N is determined in accordance with (2.5) for k = 0, and G1 is

found in exactly the same way as in (3.7) of [2].

Values of the constant a12 and the correction AE1 are

presented in Table 2.

4. NUMERICAL RESULTS

With the aid of the single-electron wave functions (3.1) and
values of the constants 85 from Table 2, the total dipole force is

determined from equations (2.4). The results are given in Table 3
together with the differences between the energies and values of
the integrals N(r2s, 2p). Within the limits of permissible error,
the integrals N(ni, nt) are eqal to unity.

1]



10

TABIE 1

Values of the Constants of the Analytic Wave Functions (3.1) for

2 3 2 2
the 1s 2p and 1s 2s2p Configurations of Atoms of the Boron Type

(Energies in Atomic Units).

B ¢t Ntt ot3 FHé
1 522p
2p
a 3.65 3.35 3.15 3.02 2.93
Ta Lo 67 5.66 6. 66 7.65 8.6/
2Tc 2.36 3.42 b bdy 5.48 6. 50
Eipoor -23.951 | -36.458 | -51.727 -69.755 |  -90.539
E -36. 663 -51.917 -69.944 -90.725
exp.
2
a 3.60 3.33 3.13 3.01 2. 91
Ta 4. 67 5.66 6.65 7.65 8.64
2Te 2.39 3.45 YAWA 5.48 6.53
Etheor -24.002 | -36.530 | -51.822 -69.871 | -90.682
E —36.747 | -52.042 -70.098 | -90.909
exp.
4
s
a 3.55 3.30 3.11 3.00 2.89
Ta 4. 67 5. 66 6.66 7.65 8.64
2Te 2. 42 3.48 4. 49 5.51 6.58
theor -24.078 | -36.641 | -51.958 -70.046 | -90.884
Eexp. -36.786 | -52.116 | ~70.207 | -91.048
1 322s2p2
“p
a 3.62 3.30 3.07 2.89 2.75
Ta 4. 69 5.67 6. 66 7.65 8.6/
b 3.23 2.88 2.60 2.38 2. 21
Tb 4o18 4.95 5.64 6.30 6.94




[Table 1 continued]

B ct N+ ot3 P
2N 2,31 3.5 4. 56 \ 5. 66 6.78
21 2.59 3. 44 434 5.29 6. 28
E: hoor. -24.145 | -36.727 | -52.095 I -70.224 | -91.099
B -24.324 | -36.928 | -52.302 -70.437 1-91.327
2y
a 3.52 3.19 3.01 2.87 2.81
Ta 4 69 5,67 6. 66 7.65 8.65
b 3.13 2.85 2.64 2.49 2.38
o 4.17 5. 06 5.8, 6.63 7.33
2Te 2,32 3.48 4 51 5.59 6.59
21 2. 66 3.55 443 5. 40 6. 21
theor 24214 |-36.812 |-52.188 -70.318 | -91.205
Eeso. -24.365 1-36.993 ! _52.371 -70.512  }-91.409
2D
a 3.48 3.23 3.03 2.89 2.80
Ta 4 69 5.68 6.67 7. 66 8.65
b 2.97 2.76 2.60 2. 47 2.38
b 4. 00 4.85 5.72 6.55 7.35
2Me 2.37 3.48 453 5,62 6.74
21 2.70 3.52 4. 40 5.30 6.18
theor -24.288  1-36.919 |-52.329 —70.498  |-91.415
exp. 24437  |-37.092  |-52.507 -70.683 |-91.612
A
P
a 3.53 3.22 1 3.01 2.85 2.73
Ta 4. 69 5. 68 6.68 7.67 8.65
b 2.95 2.60 2. 41 2.35 2.32
Tb 3.92 4 59 5.35 6.32 7.35
2Me 2.39 3.55 462 5,70 6.78
21 2. 66 3.53 L by 5.38 6. 28
theor 24441 |-37.129  |-52.59 -70.813  }91.785
-24.523 |-37.237 |-52.706 -70.935  +91.914

11
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TABIE 3

Values of the Total Dipole Force, Oscillator Strength, and Transi-
tion Probability for Atoms of the Beryllium and Boron Types (Transi-
8 -1
tion Probability in Units of 10 sec , All Other Quantities

Atomic Units)

Be B" ctt N+3 ot4
152232p 1P - 132232 1S
AE a 0.194 0.299 0. 391 0. 468 0. 541

{ b 0.233 | 0.356 | 0.464 | 0.556 | 0.644
¢ 0.192 | 0.332 | 0.464 | 0.594 | 0.723

N(r2s, 2p)13 2.85 1.86 1.38 1.08 0. 89
N(r2s, 2p)32 2.91 1.84 1.36 1.08 0. 89
s('p, s ra 162 | 695 | 3.79 | 235 | 1.59
1b 9.5 4. 30 2.37 1.48 1.00
f(1P,1s) ¢ a 0.70 0. 46 0.33 0.24 0.19
1o 0.49 0.34 0. 24 0.18 0.14
1=
w('5,'s (a 8.4 13.2 16.0 17.1 17.8
b 8.6 13.8 16.8 18.2 18.9
B | g N g3 Fa
182282p°28 - 15225%2p 2P
a 0.265 | 0.403 | 0.520 | 0.623 | 0.704
AE [ b 0.298 | 0.446 | 0.570 | 0.681 0.770
Le 0.290 | 0.440 | 0.597 | 0.750 | 0.901
N(r2s, 2p)13 2.13 1.57 1.25 1.03 0.89
N(r2s, 2p) 35 2.1 1.58 1.26 1.06 0.91
s(%s, %p) (a  3.03 | 1.64 [|1.04 Jom 0. 52
Lb 5.11 2.74 1.71 1.17 0.86
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[Table 3 continued]

£ (%3, °p) (a 0.27 | o.22 0.18 0.15 0.12
1b 0.5 0. 41 0.32 0.26 0.22

v (%5,%) ca 597 | 1.4 | 156 | 18.2 | 19.3
b 144 25.9 33.7 39.3 4.9

182s2p” 2P - 18%28%2p “P

a 0.333 | 0.488 | 0.613 | o.716 | 0.810

AE {v 0367 |os31 | 0663 | 0.774 | 0.876
¢ 0.331 | 0.505 | 0.666 | 0.824 | 0.982

N(r2s, 2p), 2.14 1.55 1.23 1.02 0.86
N(r2s, 2p)32 2.14 1.59 1.27 1.06 0.92
s(?p, %p) a 27,4 | 1hd | 9.2 | 6.24 | 446
{b 17.8 9.53 6.13 4.18 2.99

£(%3, %p) ~a  1.01 0.78 0.62 0.50 0. 40
{ b 0.72 0. 56 0.45 0.36 0. 29

2= 2

w("p,"P) - a 35.9 59.3 The5 9.3 83.9
JLb 31.1 50. 4, 63.3 68.9 7.2

B ¢t Ntt ot3 Fré

182082p 2D - 1s%2s%2p %P

a  0.190 {0.296 |0.379 | 0.442 | 0.494
AR { b 0.224 }0.339 {o0.429 | 0.500 | 0.560
¢ 0.218 |o.342 lo.461 | 0.579 | 0.697

N(r2s, 2p)q3 2.12 1.57 1.24 1.01 0.87
N(r2s, 2p)s, 2.1 1.58 1.27 1.06 | 0.91
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[Table 3 continued]

s (%p,’p) {a 14.9 8.19 5.15 3.40 2.52
b 9.74 5. 44 3.48 2,27 1.70
£(<p, %p) {a 0.19 0.16 0.13 0.10 0.08,
b 014 | 0.12 0.10 0.07, | 0.06,
w(°D, “p) a 2.18 | 4.50 5.97 | 6.26 | 6.44
| {b 2.32 4. 50 5.86 6. 04 6.3

i Note: a -- with the aid of the single-configuration
approximation, b -- with the aid of the multi-
configuration approximation, ¢ —— experimental
data.

Table 3 also includes values of the oscillator strength for
transitions from the excited state to all states of a term of the /543
fundamental configuration together with the corresponding transi-
tion probabilities. The oscillator strength is determined as
follows:

AES(LS,L'S) = -2—L+—+1 £(1s, T78)

f(E, L's) = 5

2
3(2L +1)(2s +1)
(4.1)

and the transition probability
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3

T5.1/9) = m
w(1s,L’s) 3(2L + 1)(2S +1)

3 rqy _ 2L +1 b =t
(AE)“8(LS, L'S) T w(1s,L’s).

(4.2)

Here AE is the difference between the energies of the LS and L‘S
terms of the corresponding configurations, i is the fine-structure
constant.

Clearly, unlike the total dipole force, the transition prob-
ability and the oscillator strength do not possess the property of
symmetry, since they are averaged only with respect to the initial,
but not the end states.

Equations (2.4)y (4.1) and (4.2) are given in atomic units.
The same units are used for the quantities in Table 3, except for

-1
the transition probability which is given in units of 10 sec .
In these units equation (4.2) is written in the approximate form:

— .oy _ 213(8E)’s(1s,1'8)
W(is, L's) = L+ 1) (25°+1) (4.3)

where AE and S(LS,L’S) are in atomic units, and W(IS, L'S) in units
of 10 sec .

For purposes of comparison, Table 3 includes values of the
total dipole force, the oscillator strength, and the transition
probability obtained with the aid of both the multi-configuration
and the single-configuration approximation.
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5. CONCLUSIONS

It is clear from Table 2 that the energy correction for
the multi-configuration approximation for atoms of the boron type
and for atoms of the beryllium type increases in absolute magni-
tude with increase in the atomic number in the periodic table, this
increase being less for atoms of the boron type than for atoms of
the beryllium type. Unlike the energy correction, the constant
a, decreases in absolute magnitude with increase in the atomic

number.

It is clear from Table 3 that the differences between the
energies of the excited and fundamental configurations of atoms
of the beryllium and boron types, determined with the aid of the
multi-configuration approximation, are greater than in the case
of the single-configuration approximgtion. In the case of light
atoms they exceed the experimental values, while with increase in
atomic number they occupy an intermediate position between the
single-configuration and experimental data.

The total dipole force, determined with the aid of the
multi-configuration approximation, is 1.5-1.7 times less than the
corresponding values determined with the aid of the single-con-

figuration approximation, except for the 2S - 2P transition of
atoms of the boron type, where it is as many times greater.
The multi-configuration approximation introduces unimportant

1 1
changes into the values of the probability of the P - S transi-
2_ 2 2
tion in atoms of the beryllium type and of P, D - P transitions
in atoms of the boron type; however, it increases by more than

twice the probability of the S - °P transition in atoms of the
boron type. In the first two cases the change in the total dipole
force is compensated by the change in the difference between the
energies, while in the latter case the effects of both changes are
additive owing to the negative signs of the coefficient B in (2.4b).

In the case of atoms of the boron type the total dipole forces
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for 25, 2P, 2D - 2P transitions have ratios of, on the average,
1:3.5:2 in the multi-configuration approximation as compared with
1:9:5 in the single-configuration approximation. The corresponding
transition probabilities have ratios of, on the average, 1:1.9:0.16
as compared with 1:5:0.36 in the single-configuration approximation.

Vil'nyus State University

Rec'd: 3 February 1953
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